Apotransferrin-induced recovery after hypoxic/ischaemic injury on myelination
نویسندگان
چکیده
We have previously demonstrated that aTf (apotransferrin) accelerates maturation of OLs (oligodendrocytes) in vitro as well as in vivo. The purpose of this study is to determine whether aTf plays a functional role in a model of H/I (hypoxia/ischaemia) in the neonatal brain. Twenty-four hours after H/I insult, neonatal rats were intracranially injected with aTf and the effects of this treatment were evaluated in the CC (corpus callosum) as well as the SVZ (subventricular zone) at different time points. Similar to previous studies, the H/I event produced severe demyelination in the CC. Demyelination was accompanied by microglial activation, astrogliosis and iron deposition. Ferritin levels increased together with lipid peroxidation and apoptotic cell death. Histological examination after the H/I event in brain tissue of aTf-treated animals (H/I aTF) revealed a great number of mature OLs repopulating the CC compared with saline-treated animals (H/I S). ApoTf treatment induced a gradual increase in MBP (myelin basic protein) and myelin lipid staining in the CC reaching normal levels after 15 days. Furthermore, significant increase in the number of OPCs (oligodendroglial progenitor cells) was found in the SVZ of aTf-treated brains compared with H/I S. Specifically, there was a rise in cells positive for OPC markers, i.e. PDGFRα and SHH(+) cells, with a decrease in cleaved-caspase-3(+) cells compared with H/I S. Additionally, neurospheres from aTf-treated rats were bigger in size and produced more O4/MBP(+) cells. Our findings indicate a role for aTf as a potential inducer of OLs in neonatal rat brain in acute demyelination caused by H/I and a contribution to the differentiation/maturation of OLs and survival/migration of SVZ progenitors after demyelination in vivo.
منابع مشابه
Brief exposure to hyperoxia depletes the glial progenitor pool and impairs functional recovery after hypoxic-ischemic brain injury.
Patterns of hypoxic-ischemic brain injury in infants and children suggest vulnerability in regions of white matter development, and injured patients develop defects in myelination resulting in cerebral palsy and motor deficits. Reperfusion exacerbates the oxidative stress that occurs after such injuries and may impair recovery. Resuscitation after hypoxic-ischemic injury is routinely performed ...
متن کاملClemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury.
Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent n...
متن کاملImpact of neonatal hypoxia‐ischaemia on oligodendrocyte survival, maturation and myelinating potential
Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disor...
متن کاملFoetal hypoxia increases cardiac AT(2)R expression and subsequent vulnerability to adult ischaemic injury.
AIMS Hypoxia is a common stress to the foetus and results in increased cardiac vulnerability to adult ischaemic injury. This study tested the hypothesis that foetal hypoxia causes programming of increased AT(2) receptor (AT(2)R) expression in the heart, resulting in the heightened cardiac susceptibility to adult ischaemic injury. METHODS AND RESULTS Time-dated pregnant rats were divided betwe...
متن کاملDevelopmental amnesia associated with early hypoxic-ischaemic injury.
We recently reported on three young patients with severe impairments of episodic memory resulting from brain injury sustained early in life. These findings have led us to hypothesize that such impairments might be a previously unrecognized consequence of perinatal hypoxic-ischaemic injury. Neuropsychological and quantitative magnetic resonance investigations were carried out on five young patie...
متن کامل